For the following problems, let $\Sigma = \{c, s\}$.

1. Prove the following language is not regular.

 $B_1 = \{w | w \text{ contains an equal number of } c's \text{ and } s's\}$

 - Assume B_1 is regular. This means the pumping lemma for regular languages holds – that is, any string s of length at least p that is in B_1 can be “pumped”.

 - Consider $s = \ldots$. Note $s \in B_1$ and s has length at least p, so s must be able to be “pumped”.

 - Given that the part we are pumping (y) must be non-empty, and that it must occur in the first p symbols of s, we know that y must:

 - Consider the string $s' \text{ which is created from “pumping” } y$ ______ times.

 \[s' = \ldots \]

 - Note that $s' \notin B_1$, as our inferences about y we made above mean:

 - We therefore have a contradiction – B_1 is regular so s must be “pumpable”, but we have shown it is not “pumpable”. We reached this contradiction by assuming B_1 was regular. Therefore, B_1 is not regular.

2. Prove the following language is not regular.

 $B_2 = \{c^n s^m | n \leq m\}$

 - Consider $s = \ldots$.

 - We know that y must: \ldots

 - $s' = \ldots$

 - $s' \notin B_2$ because:
3. Prove the following language is not regular.

\[B_3 = \{ w \mid \text{the length of } w \text{ is a power of 2} \} \]

- Consider \(s = \)__________________________.
- We know that \(y \) must: __________________________
- \(s' = \)__________________________
- \(s' \notin B_3 \) because:

4. Prove the following language is not regular.

\[B_4 = \{ wc^n \mid w \text{ is a string over } \Sigma \text{ of length } n \} \]

- Consider \(s = \)__________________________.
- We know that \(y \) must: __________________________
- \(s' = \)__________________________
- \(s' \notin B_4 \) because:

5. Prove the following language is not regular.

\[B_5 = \{ w \mid w \text{ is a “balanced” string, with } c \text{ “opening” and } s \text{ “closing” } \} \]

(I’ve obviously made these terms up, but I’ll explain \(B_5 \) in class)

- Consider \(s = \)__________________________.
- We know that \(y \) must: __________________________
- \(s' = \)__________________________
- \(s' \notin B_5 \) because: